
The past, present, and future of architecture
Bob Hruska

Principal Consultant
Workshop 1 - Best Practice Tour 2023

March 23, 2023

Architects love to hate documenting architecture…

... they look at it as a necessary evil.

Bob Hruska

• OMG Certified UML® Professional™
• 20+ years’ experience in software and systems engineering in several industries
• Experienced in the Capability Maturity Model Integration (CMMI) appraisal journey and with development of the New Product Introduction (NPI) process.
• Contributing to an institutionalization of cybersecurity as a part of a system development lifecycle.

Let’s address the questions:

• Why should we care about architecture at all?

• Why is documenting software architecture so difficult?

• What are the characteristics of good architecture?

• What role does architectural documentation play in a project’s
lifecycle?

• What are the architectural drivers?

• What are the benefits of the model beyond the modeling itself?

The Great Pyramid of Giza

There is no evidence, no ancient plans…

Giza Plateau Computer Model - University of Chicago

How were the Pyramids built then?

• The Ramp Theory • The Water Shaft Theory

Source: https://www.contiki.com/six-two/how-were-the-egyptian-pyramids-built/

The oldest architectural plan

• Discovered in Iraq and
dating back to the
Mesopotamia
civilization (8000-
2000 B.C.)

Thousands of years later ….
modern houses floor plan

4000 years and we’re back to the same
language ☺

Beacon Towers, Sands Point,
Long Island, New York. - built

from 1917 to 1918

The point is to address different concerns

ISO IEEE 42010

«ISO IEEE 42010»
System of Interest

«ISO IEEE 42...
Architecture

«ISO IEEE 42010»
Stakeholder

«ISO IEEE 42010»
Concern

«ISO IEEE 42010»
Architecture

Viewpoint

«ISO IEEE 42010»
Model Kind

«ISO IEEE 42010»
(AD)

Architecture Description

«ISO IEEE 42010»
Architecture View

«ISO IEEE 42010»
Model

«ISO IEEE 42010»
Architecture

Rationale

«ISO IEEE 42010»
Architecture Decision

«ISO IEEE 42010»
AD Element

1

expresses

1

1..*

has

1..*

1..*

1..*

0..*

pertains to

1..*

0..*

raises

0..*

1..*

1

governs

1

1..*

frames

1..*

1

identifies

1..*

1..*

addresses

1..*

1

identifies

1..*

0..*

affects

1..*

0..*

justifies

1..*

1

exhibits

1

1

governs

1

1 identifies

1

1..*

1..*

1..*

has interests in

1

0..*

depends upon

0..*

Characteristics of Good Architecture

• Durability (Firmatis)

• Utility (Utilitas)

• Beauty (Venustatis)

The Roman architect Vitruvius defined
three characteristics of good architecture
in his treatise De Architectura more than
2,000 years ago.

Source: Google Maps

Source: Google Maps

Source: Google Maps

Source: Google Maps

Reality can be modeled in ways
that communicate spatial

information effectively

Source: Google Maps

Source: Google Maps

Enough detail to start
exploring

Very detailed and precise (public transportation, buildings, etc.)

Travel Guidebook (maps, POI, itineraries, etc.)

Source: Google Maps

Architecture diagrams should be
like maps…that help software

developers navigate a large
and/or complex codebase…

Virtual Panel on Software Architecture Documentation (2009)
http://www.infoq.com/articles/virtual-panel-arch-documentation

What do you see as the future of software architecture
documentation?

...14 Years Later

GUI
Webserver

Login
authentication

Audit
subsystem

Report
generator

User managment
system

parameters
Archive

database

Trade
system

Reference
system

Communicator2Communicator1

End-user Admins

Users interface

Logic layer

Data sources layer

Users
database

• What is this shape/symbol?
• What is this line/arrow?
• What do the colors mean?
• What level of abstraction is shown?
• Which diagram do we read first?

Information is likely
still stuck in your heads

Software architects
struggle to communicate

architecture

Think about notation

Titles
Short and meaningful, numbered if
diagram order is important

Layout
Sticky notes and index cards make a
great substitute for drawn boxes,
especially early on

Color
Ensure that color coding is
made explicit; watch out for
color-blindness and
monochromatic printers

Shapes
Don’t assume that people will
understand what different shapes
are being used for

Lines
Favor unidirectional arrows, add
descriptive text to provide
additional information

Labels
Be wary of using acronyms,
especially those related to the
business/domain that you
work in

Keys
Explain shapes, lines, colors,
borders, acronyms, etc.

Orientation
Most important thing in the
middle; be consistent across
diagrams

Responsibilities
Adding responsibilities to
boxes can provide a nice “at a
glance” view (Miller’s Law;
7±2)

Well-defined structure is when you…

• Can see the solution from multiple levels of abstraction

• Understand the big picture (context)

• Understand the logical containers

• Understand the major components used to satisfy the important user stories/features

• Understand the notation, color coding, etc. used on the diagrams

• Can see the traceability between diagrams (views)

Understand how the significant
elements fit together.

Abstraction

Details

Abstraction vs. Details of a Model

Well-defined vision is when you…

• Understand the major technology decisions

• Understand the implementation strategy (frameworks,
libraries, APIs, etc.)

• Can visualize the code structure

Provide firm foundations
and a vision to move
forward.

If this works for others than why not for SW?

Is this the
reason ☺?

Software Is All Around…

• Wide range of industries ranging from aerospace and
automotive engineering to finance, defense, government,
entertainment, telecommunications etc.

• Different engineering domains
• specific technologies or coding languages

• Vast of modeling languages and frameworks
• difficult to identify the right tool or combination of tools to meet your

exact modeling requirement or scenario

Types of Architecture
• Sub-architectures

• Business architecture

• Information architecture

• Application architecture

• Technology architecture

• Architectural views

• Security architecture

• Geospatial architecture

• Social architecture

T he Zachm an

Fram ework

DATA
What

FUNCTION
How

NETWORK
Where

PEOPLE
Who

TIME
When

MOTIVATION
Why

SCOPE

(Contextual)

Planner

BUSINESS MODEL

(Conceptual)

Owner

SYSTEM MODEL

(Logical)

Designer

TECHNOLOGY MODEL

(Phy sical)

Builder

DETAILED

REPRESENTATIONS

Sub-Contractor

FUNCTIONING

ENTERPRISE

Language vs. Methodology

• Modeling Language
• Defines elements and their relationship
• Defines syntax and semantics
• What type of elements can be used during modeling?
• E.g. Boxes and lines ☺, UML, SysML, BPMN, ArchiMate …

• Development Methodology
• Defines the steps of the Architecture process
• Defines the usage of the model elements and diagrams
• How shall the model be built?
• E.g. Zachman Framework, FEAF, DoDAF and TOGAF, …

Modeling Methodology gives the Answers

How should I start
and what do next?

What diagrams
should I use for
what purpose?

How should I
structure the

model?

What does
Traceability mean?

Why does BPMN
not help me to

solve these
problems?

How to prevent
redundancy in the

Model?

Why does everyone
model differently?

???

What is a model?
• Model is an abstraction of the reality

• To provide information in an understandable way

• To show essential system aspects

• For communication purpose (project member, customer)

• To represent complex architectures

• Diagram is a graphical representation of the model

Model

View/

Diagram
User Model-Repository (e.g. database)

Modeling notation

What is the advantage of using modeling tools?

Automatic
Tool Chain

• Model-Verification
• Simulation
• Automations

• Model Transformation
• Test-Models

Automatic
Tool Chain

• Documents • Source-Code
• XML/DB-Schema

• Test Cases
• Test Plans

If everything is made “right“, you can automate it!

Tool Tool

Garbage in → Garbage out

What went wrong?

We didn’t pay enough attention to the right
architecture drivers!

(especially quality attributes)

• Benchmarks that describe a system’s intended
behavior within the environment in which it was
built.

• Requirement that specifies criteria that can be used
to judge the operation of a system, rather than
specific behaviors.

Quality Attributes are Architectural Drivers

• Availability - Is it available when and where I need to use it?

• Installability - How easy is it to correctly install the product?

• Integrity - Does it protect against unauthorized access and data loss?

• Interoperability - How easily does it interconnect with other systems?

• Performance - How fast does it respond or execute?

• Reliability - How long does it run before experiencing a failure?

• Recoverability - How quickly can the user recover it from a failure?

• Robustness - How well does it respond to unexpected operating conditions?

• Safety - How well does it protect against injury or damage?

• Usability - How easy is it for people to learn and use?

Quality Attributes Important to Users

• Efficiency – how well does it utilize processor capacity, disk space, memory, bandwidth, and other

resources?

• Flexibility – How easy can it be updated with new functionality?

• Maintainability – How easy is it to correct defects or make changes?

• Portability – How easily can it be made to work on other platform?

• Reusability – How easily can we use components in other systems?

• Scalability – How easily can I add more users, servers, or other extensions?

• Supportability – How easy will it be to support after installation?

• Testability – Can I verify that it was implemented correctly?

Quality Attributes Important to Developers

The ISO/IEC
42010
standard
defines
architecture
as:

'The fundamental organization of a
system, embodied in its components,
their relationships to each other and the
environment, and the principles

governing its design and evolution'.

Continuous stream of architectural decisions

Source: https://www.cgi.com/en/solutions/RCDA-agile-architecture

Balance your backlog

• Green – Features to be delivered, the
functional user stories

• Yellow – Architectural infrastructure that
support the quality requirements

• Red – Defects that are identified and need
to be addressed

• Black – Technical debt that builds up as
the product is built and key decisions are
deferred or poor work done

Source: https://philippe.kruchten.com/2013/12/11/the-missing-value-of-software-architecture/

Backlog coloring scheme example

Architecture Roadmapping strategies

Release strategy 1: value-first Release strategy 2: architecture-first

68

Beware of “analysis paralysis”!

Source: https://www.cgi.com/en/solutions/RCDA-agile-architecture

Why “describe” architecture?

• To document your work

• Sooner or later, someone else will want to understand what you

have done.

• Carefully-selected architectural descriptions are an effective way

of conveying understanding.

• To surface “unknowns”

• Often, you don’t know what you (really) know until you try and

describe (or explain) it

• Some of these “unknowns” are genuine project risks

Focus on creating
architectural descriptions
where it counts.

	Slide 1: The past, present, and future of architecture
	Slide 2
	Slide 3: Let’s address the questions:
	Slide 4: The Great Pyramid of Giza
	Slide 5: There is no evidence, no ancient plans…
	Slide 6: How were the Pyramids built then?
	Slide 7: The oldest architectural plan
	Slide 8: Thousands of years later ….
	Slide 9: 4000 years and we’re back to the same language
	Slide 10: Beacon Towers, Sands Point, Long Island, New York. - built from 1917 to 1918
	Slide 11: The point is to address different concerns
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Characteristics of Good Architecture
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Very detailed and precise (public transportation, buildings, etc.)
	Slide 25: Travel Guidebook (maps, POI, itineraries, etc.)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Well-defined structure is when you…
	Slide 46
	Slide 47: Well-defined vision is when you…
	Slide 48: If this works for others than why not for SW?
	Slide 49: Is this the reason ?
	Slide 50: Software Is All Around…
	Slide 51: Types of Architecture
	Slide 52
	Slide 53: Language vs. Methodology
	Slide 54: Modeling Methodology gives the Answers
	Slide 55: What is a model?
	Slide 56: Modeling notation
	Slide 57
	Slide 58
	Slide 59: What went wrong?
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: The ISO/IEC 42010 standard defines architecture as:
	Slide 65: Continuous stream of architectural decisions
	Slide 66: Balance your backlog
	Slide 67: Backlog coloring scheme example
	Slide 68: Architecture Roadmapping strategies
	Slide 69: Why “describe” architecture?
	Slide 70
	Slide 71

