
DSLs for SMEs ☺
Bob Hruska

Principal Consultant

Workshop 2 - Best Practice Tour 2023

March 23, 2023

Let’s address these questions:

• Introduction to Domain Specific Languages (DSLs)

• How to establish a common language?
• bridging GAPs of terms such as AI model, trained AI model, model, etc.

• Identifying the right modeling approach

• use of different model languages and how to combine them

• How to integrate the modeling workflow into the development process?
• which model should be created when and by whom

• How to implement the right modeling approach as a framework into EA?
• Exploring the real-life example of EU funding project EUREKA PENTA ECOMAI

Domain Specific Languages

• Subject matter experts, or SMEs, are in
charge of the knowledge and expertise
that form the foundation of software

• But too often this rich expertise is not
captured in a structured way and gets lost
when translating it for software
developers

https://freecontent.manning.com/the-what-and-why-of-domain-specific-lanugages/

HwComponent SwComponent

system

«metaclass»

Composition

Comprise

Element

SystemComponent

- File: string

- URI: string

0..*

«Comprise»

0..*

«Comprise»

«abstraction»

1..*«Comprise»

Try typing the phrase "the answer to life the universe and
everything" into google...)

Establish the common language

• Create and use a glossary of project terms (domain model…)
• Synonyms are excellent to reconcile different languages

• Use it consistently in all communication within/about the
project
• Inside the team …

• With other partners …

Common language facilitates communication and avoids confusion

when I say apple

I mean this one..

Baseline Application Description

• A gaming machine allowing clients to buy slot
machine credits the player cash or some other
sort of value, win or lose, and cash in their
credits.

21

How to Create a Slot Machine Domain Model

• A person playing a slot machine can insert cash and insert TITO tickets (a paper ticket
with a barcode), into a designated slots on the machine.

• The machine can support multiple games and the player can select which game to play

• The game is then activated by means of a button, or on newer machines, by pressing a
touchscreen on its face.

• The game itself does not involved skill on the player's part

• The objective is to get the players to play
• The game usually involves matching symbols, either on mechanical reels that spin and stop to

reveal one or several symbols, or on simulated reels shown on a video screen.
• Most games have a variety of winning combination of symbols, often posted on the face of

the machine. If a player matches a combination according to the rules of the game, the slot
machine credits the player, such as free spins or extra games.

Slot Machine

«actor»

Player

- Name

TITO ticket

Game

- Type

- Rule

Trigger

A paper ticket with

a barcode

Common language

facilitates communication

and avoids confusion

Button Screen Button

Reel

- Symbol

+ spin(): int

+ stop(): int

«enumeration»

Symbol library

 Bar

 Cash

 7

 Joker

Cash Accceptor

Cash

«enumeration»

GameLibrary

Credit

Credit Ballance

Coin Bills

convert

1..*

1

Bet

«flow»

increase

1

insert

*
start

insert

accept

+betdecrease

1

select

1

0..2

1

+winincrease

1

1

play

1..*

«use»

«use»

accept

Modelling Approach

What the Modelling Approach consists of?

Method Process

What language elements should be used? *

What connectors should be used? *

What element should be connected with which connector? *

How to model structure (Packages) should look like? *

Which elements should be contained in which Package? *

Approach specific subset
of the language &
required extensions for
the Domain (DSL)

Approach specific model structure

Define additional rules, constraints and guidelines * Approach specific Governance

* Which Artifact should be created

* When

* Who’s responsible for that step

Models are structured data with a graphical representation!
What is the structure of this?

To prevent models like this, we need a modelling approach!

Define additional Stereotypes and Tags if required *

Project
Metamodel

IoT-PML

MOF

UML
IP-XACT

XML Schema

(filtered) package import

mapping
mapping (1:1)

IoT-PML
Model

IP-XACT
model

import data

UML
Model

M3

M2

M1

DSL B

DSL B
model

import data
(optional)

IoT-PML based
code generator

Hybrid IoT-PML/DSL-
based code generator

Meta-
metamodel B

Based on mapping with tracing links
(model references), e.g.
IoTPML::Register ➔ IPXACT::register

Tooling aspects (WP3): Import-once,
binding, ...

LegendMeta-metamodel

IoT-PML (meta)model

External (meta)model

Identify the “right” modeling languages

Identify the right Modelling Approach

The more questions we have,
the easier it is to find the required language elements!

You will prevent:
• Modelling too much
• Modelling too complex

You can assure:
• Any Model has a purpose
• You have found the easiest representation

Identify the “right” modeling workflow

IoT-PML metamodel example

Let’s stay on course…

Philippe Kruchten: The "4 + 1" View Model of Software Architecture, IEEE Software 12 (6), November 1995

- Class Diagram
- Communication diagram
- Sequence diagram

- Package diagram
- Component diagram
- Sequence Diagrams
- Componenets, Subsystems,
Layers
- Import- and Export Relations

- Activity diagram
- Processes
- Messages

- Deployment diagram
- Nodes
- Directed Communication

- Use Case diagam
- Activity diagram
- Each of the 4 views is
illustrated with Use Cases

1st Iteration Architectural Viewpoints 1/3

Architectural View
Stakeholder Concerns

(What does the view help to answer?)

Stakeholders

A
rc

h
it

ec
t

D
ev

el
o

p
er

In
te

gr
at

o
r

Te
st

er

M
ai

n
ta

in
er

P
ro

d
u

ct
 M

an
ag

er

C
u

st
o

m
er

Context View

• Who (users, external systems) is interacting with the
system?

• How does the system fit into the existing environment?
• What kind of information is required and delivered by

the system?

X X X X X X X

Conceptual View

• What are the functional capabilities of the system?
• How does the system work on a high-level?
• How is the system structured conceptually?
• What are the operating modes of the system during a

run-time phase?
• What kind of information is required and delivered by

the conceptual elements?

X X X

Subsystem View
• What subsystems (software, electronical, mechanical,

etc.) compose the system?
• What dependencies exist between subsystems?

X X X X

1st Iteration of Architectural Viewpoints 2/3

Architectural View
Stakeholder Concerns

(What does the view help to answer?)

Stakeholders

A
rc

h
it

ec
t

D
ev

el
o

p
er

In
te

gr
at

o
r

Te
st

er

M
ai

n
ta

in
er

P
ro

d
u

ct
 M

an
ag

er

C
u

st
o

m
er

Subsystem

Interaction View

• What kind of information is required and delivered by
the subsystems?

• What interaction points does each subsystem expose?
• How do subsystems interact in order to provide a

certain behavior or functionality?
• How does the system work?

X X X X X X

Software

Implementation View

• Which software structural elements will be developed
in-house and which will be acquired or reused?

• How are concepts like libraries, configuration files,
assemblies, and executables used?

X X X X X X

Software Deployment

View

• What is the run-time configuration of processing
hardware nodes and the execution environment
running on those notes?

• How are the implementation elements distributed
across physical hardware nodes and execution
environment?

X X X X X X

1st Iteration of Architectural Viewpoints 3/3

Architectural View
Stakeholder Concerns

(What does the view help to answer?)

Stakeholders

A
rc

h
it

ec
t

D
ev

el
o

p
er

In
te

gr
at

o
r

Te
st

er

M
ai

n
ta

in
er

P
ro

d
u

ct
 M

an
ag

er

C
u

st
o

m
er

Software Structural

View

• What logical structural elements compose the software
system?

• What interfaces are provided and required by structural
elements?

• What structural elements are nested together?
• Are all key usage scenarios covered by the identified

structural elements?
• Which structural elements need to be built first for

better scheduling?
• Which structural elements bring higher risk?
• Which functional units need more attention?
• What are the key integration points between functional

units/modules?
• How do different elements interact with each other to

satisfy key usage scenarios?
• What kind of information is required and delivered by

the structural elements?

X X X X X

Final IoT-PML Architectural Viewpoints

Architectural Viewpoint

Stakeholders Note

A
rc

h
it

ec
t

D
ev

el
o

p
er

In
te

gr
at

o
r

Te
st

er

M
ai

n
ta

in
er

P
ro

d
u

ct

M
an

ag
er

C
u

st
o

m
er

Requirements X X X X X Systems engineering

System Context X X X X X X X Systems engineering

System Decomposition X X X Systems engineering

Software Stack X X X X X X IoT-PML

Cybersecurity X X X Threat modeling

IoT-PML

IoT-PML implementation in EA
Functional Req. System Context System Decomposition Software Stack Behavior Specification Threat model

IoT-PML

IoT-PML example diagram
«SwComponent»

TCPsocket

OpenCV

OpenCV

TBD

«SwComponent»

TCPsocket

«SwComponent»

FrameGlobalVariables NetworkOutputGlobalVariables

OpenCV

OpenCV

The vehicle detector

«SwComponent»

InternalVariable

OpenCV

«SwComponent»

InternalVariable

InternalVariable

«SwComponent»

NetworkOutputGlobalVariables

TCPsocket

FrameGlobalVariables

TBD

«SwComponent»

InternalVariable

NetworkOutputGlobalVariables

«SwComponent»

OpenCV
InternalVariable

«SwComponent»

TCPsocket

MatrixVariable

«SwComponent»

FrameGlobalVariables

InternalVariable

«SwComponent»

MatrixVariable

«Sensor»

Camera

«Sensor»

Camera

«Device»

Monitor

«Device»

Monitor

«NFQ_Memory»

NFQ1

tags

constraintType = ConstValue

kind = requirement

Value = <5MB

The target for the memory footpring of the

existing neural network is less than 5MB

«Service»

SW application

«Service»

SW application

Description

Requirement

NFQ legend

Video stream

Vehicle detection data

Video stream

including vehicle

identification

HDMI

ethernet

USB

Ecological Motor
Control and
Predictive

Maintenance with
AI

ECOMAI has started in April 2022

Mission

• ECOMAI project is developing
technologies

• to enhance electric motor drive systems
with an embedded AI system running on a
specialized AI hardware platform

• to optimize the efficiency and lifetime of
electric motors, thereby reducing energy
consumption and enabling development
of more ‘ecological’ systems

• to lead to market opportunities for
applications in numerous sectors including
automotive, medical and transportation.

Consortia
• Germany:

• Infineon Technologies AG (IFX)
• MOTEON
• FEAAM
• Technical University of Munich
• Technical University of Ilmenau

• Austria
• SparxSystems (SPARX): Model-based Design

• Subcontractor: Software Center Hagenberg GmbH
(SCCH)

• Turkey
• Albayrak ltd., Railway Platform Screen Doors,

• Subcontractor: Eskisehir Osmangazi University, (Eyup
Cinar eyup.cinar@ogu.edu.tr)

mailto:eyup.cinar@ogu.edu.tr

Technology Value Chain and Use Cases

https://ecomai.eu

WP5: Embedded AI SW And Development
Kit (SPARX)

• T5.1 Software/AI Model Development for
Condition Monitoring and Predictive
Maintenance (Alb) (Alb, UsePAT, IFX)

• T5.2 Software/AI Model Development for
Ecological Motor Drives (TUIL)
(MTN, TUIL, IFX, FEAAM)

• T5.3 Model-based Design Environment for AI-
enhanced Drive Systems (SPARX)

42

ECOMAI taxonomy 1st iteration

Tiny hardware

platform::Application

software

Tiny hardware

platform::Firmware

The Domain Model is a view of all the objects

that make up an area of interest, and their

relationships. It is used to capture the

significant objects within a system,

organization or any target domain.

«Artifact»

AI model

tags

Type = Information

AI Compiler

«Artifact»

AI Dataset

tags

Type = Information

TinyML

Tiny hardware

platform::SW

component

«Artifact»

AI model inference

tags

Type = Information

«Artifact»

Trained AI model

AI Model Architecture

AI Model Type

Neural network Fuzzy System

Layer

«Artifact»

HW Constraint

tags

Type = Information

«Artifact»

Requirement

tags

Type = Information

Application

requirement

«Artifact»

Dataset source

tags

Type = Information

Database Simulation Target system Data collection system

«Artifact»

Compressed trained

AI model

tags

Type = Information

«Artifact»

Sonic amp

tags

Type = Information

«Artifact»

Environment

tags

Type = Information

Reward Interpreter

Action

Agent

State

Observation

«Artifact»

Policy

tags

Type = Information

«Artifact»

Observation action reward dataset

tags

Type = Information

defined by

has inpact on

transform

provide

deploy

transformed into

use

defined by

aplies action on

1..*

output

run on

provide

outputs

aplies

input for

ECOMAI taxonomy 1st iteration

Tiny hardware platform

Peripheral I/O

device

Application

software

FirmwareHardware

component

Microprocessor

The Domain Model is a view of all the objects that make

up an area of interest, and their relationships. It is used to

capture the significant objects within a system,

organization or any target domain.

Communication

module

Communication

protocol

Power supply Data semantics

Node management

AI Compiler
TinyML

SW component

«Artifact»

AI model inference

tags

Type = Information

«Artifact»

Trained AI model

«Artifact»

HW Constraint

tags

Type = Information

Memory

HW accelerator

«Artifact»

Compressed trained AI

model

tags

Type = Information

1

describes

run on

optimizes AI model fordeployes on

transform

1..*

deployed on

1

transformed into

1..*

define

Let’s not re-invent the wheel, shall we?

 VVML (VALU3S)

 VVML is domain-specific language (DSL) for describing validation and verification activities

 Design of re-usable workflow assets such as V&V activities and artifacts that are exchanged between workflows

 2 levels of modelling: method definition and workflow specification

 IoT-PML (COMPACT)

 is a DSL suitable to IoT nodes, which is implemented as the UML profile.

 IoT-PML supports both, top-down and bottom-up design flow or its combination.

 Advantages

 Based on a simple, known, standardized modelling notation

 Implemented into EA as a framework using MDG Technology

AI-PML
Model

MOF

UML
VVML DSL

(filtered) package import

mapping
mapping (1:1)

AI-PML
Model

UML
Model

M3

M2

M1

IoT-PML DSL

import data
(optional)

Embedded SW
application with
AI component

LegendMeta-metamodel

IoT-PML (meta)model

External (meta)model

Identify the “right” modeling
languages

? DSL

VVML Principles

AI model generation

tags

Type = Semi-automated

Perform activities

 : AI model design

 : AI Training process

 : Collect & preprocess dataset

in: Requirementin: Requirement

in: HW Constraintin: HW Constraint

in: Dataset sourcein: Dataset source

out: Trained AI modelout: Trained AI model

out: AI Datasetout: AI Dataset

AI model design

out: AI modelout: AI model

in: HW Constraintin: HW Constraint

in: Requirementin: Requirement

in: AI Datasetin: AI Dataset

StartWorkflow1

Activity1

AI Training

process

«SequenceFlow»

«Artifact»

Requirement

tags

Type = Information

Reinforcement Learning
ECOMAI T5.2 reinforcement learning

in: Requirementin: Requirement

in: HW Constraintin: HW Constraint

in:

Environment

in:

Environment

out: Policyout: Policy

StartWorkflow3

Policy evaluation

in: Environment

in: Requirement in: Policy

out: Observation action reward dataset

Reinforcement learning algorithm

out: Policy

in: Observation action reward dataset

count

iteration

StopWorkflow3

requirement

fulfilled?

Start policy

in: HW Constraint

in: Requirement

out: Policy

XOR

«ArtifactFlow»«SequenceFlow»

«SequenceFlow»
«SequenceFlow»

«SequenceFlow»

[yes]

«SequenceFlow»

[>1000]

«ArtifactFlow»

«SequenceFlow»

«ArtifactFlow»

«ArtifactFlow»

«SequenceFlow»

«SequenceFlow»

«ArtifactFlow»

«ArtifactFlow»

«ArtifactFlow»

«ArtifactFlow»

«SequenceFlow»

[no]

«SequenceFlow»

[<1000]

DSL Description

ArchiMate + BPMN

General Takeaway

IT Should Not Use BPMN To Capture Business
Processes

• IT should not use BPMN to capture business
processes as this will create chaos and no clear
demarcation between business and the application
layer.

• To avoid misunderstandings and political hick-hack,
IT should use Archimate for application processes
and UML Activity Diagrams for the creation of
Application Process Flow Diagrams.

• BPMN should be left to Business Architects and the
Business. In the BPMN Business Process flow
diagrams, specify Business Services in the Pool and
Business Roles and Business Collaborations in the
Lanes.

Representation of Application Components in BPMN
and UML Activity Diagrams

• In BPMN diagrams, Application Components such
as User Interfaces may be represented as a
"Supporting" architecture element.

• In UML Activity diagrams, generic business actors
and application components from ArchiMate can
be represented in the partitions or used as
classifiers.

• Business Roles, Business Services, Business
Processes, and Business Collaborations should not
be used in order to maintain a clear separation.

MMMI Level
5 |

Optimizing

Deployment of EA for ECOMAI

https://research.sparxsystems.eu/rdweb

https://research.sparxsystems.eu/RDWeb/webclient

https://research.sparxsystems.eu/rdweb

Email: Server

Sparx SaaS modeling infrastructure

HTTP Proxy zone
Redundant Authentication / Authorization

:Web Browser

Model Admin
Model WriterModel Reader

xxx.cloud.sparxsystems.eu: Server

Domain = cloud.sparxservices

Operating System = OS.Windows Server 2022

Type = VM.VMware

mail: MS

Exchange Server

:Desktop PC

«computer»

MySQL Data server: RDBMS

/1433: TCP/IP
OLEDB

User management: Prolaborate DB

repo: EA Model Repository

Internet

Ver.5.0.xx 32bit: Pro Cloud Server

/sparxcloudlink.sseap

/8443: https

OSLCSPX: Floating License Server

SPX: Procloud config client

SPX: Embedded Web Server

: .NET

Ver.4.1.2.0: Prolaborate

/443: https

/HTML5

OSLC

SPX: Prolaborate mailer service

: SMTP

«device»

HTTP: Load balancer

#1 Domain Controller: Server

Operating System = OS.Windows Server 2022

AD: Active Directory

#2 Domain Controller: Server

Operating System = OS.Windows Server 2022

AD: Active Directory

Remote Desktop

«device»

Remote Desktop Gateway:

Load balancer

#1 RDP session: Server

Operating System = OS.Windows Server 2022

Domain = rdi.sparxsystems.eu

#2 RDP session: Server

Operating System = OS.Windows Server 2022

Domain = rdi.sparxsystems.eu

RDP: Remote desktop

RDP: Remote desktop

RDP: EA Client

https

RDP: EA Client

https

Logging and monitoring: Server

Operating System = OS.Windows Server 2022

Backup Server: Server

Admin's: EA Client

This deployment diagram describes the Pro Cloud Server together with

Prolaborate can be used, showing how a single repository can be made

available via the internet. The connection to the repository via Prolaborate

can be accessed using a Web Browser on Desktops, Notebooks, Tablets and

Smart Phones. The Enterprise Architect client is available vie Remote

Desktop web client. The Remote Desktop web client lets users access your

organization's Remote Desktop infrastructure through a compatible web

browser.

balanced traffic

Authentification

«use»

load balancing

https cloud connection

load balancing

remote desktop connectivity

OLEDB

environment

backup

https prolaborate connection

https cloud connection

Authentification

«use»

Authentification

«use»

P
h

ili
p

p
D

an
ie

l
V

C
S

Model
Version V1

Time
08:32

Check Out
09:05

Check Out
11:34

Check In
12:56

Check In

Version
V2 =

V1+V1‘‘

Version
V3 =

V1+V1‘‘+V1‘

Merge Changes

+ Change V1‘

+ Change V1‘‘

Version
V1

Version
V1

LemonTree © Highlights

Diff & Merge
3-way diffing and merging

of Enterprise Architect
models

Model Versioning
Parallel editing of models
through optimistic model

versioning

VCS Integration
Seamless integration with Git,

Subversion, PTC, etc.

Branches of models
Parallel developments of

versions and variants

Merge Preview
Diagram merge and merge

preview

Review
Changes are visualized clearly

and understandably for
reviews

1

2

3

4

5

6

Filtering

Diagram Versions

List of Impacted Diagrams

Changed Element Properties

Smart Grouping of Changes

Merge Preview

1

2

3

4

5

6

	Slide 1: DSLs for SMEs 
	Slide 2: Let’s address these questions:
	Slide 3: Domain Specific Languages
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Establish the common language
	Slide 21: Baseline Application Description
	Slide 22: How to Create a Slot Machine Domain Model
	Slide 23
	Slide 24
	Slide 25: Identify the “right” modeling languages
	Slide 26: Identify the right Modelling Approach
	Slide 27: Identify the “right” modeling workflow
	Slide 28: IoT-PML metamodel example
	Slide 29: Let’s stay on course…
	Slide 30: 1st Iteration Architectural Viewpoints 1/3
	Slide 31: 1st Iteration of Architectural Viewpoints 2/3
	Slide 32: 1st Iteration of Architectural Viewpoints 3/3
	Slide 33: Final IoT-PML Architectural Viewpoints
	Slide 34: IoT-PML implementation in EA
	Slide 35: IoT-PML example diagram
	Slide 36: Ecological Motor Control and Predictive Maintenance with AI
	Slide 37: Mission
	Slide 38: Consortia
	Slide 39: Technology Value Chain and Use Cases
	Slide 41
	Slide 42: WP5: Embedded AI SW And Development Kit (SPARX)
	Slide 43: ECOMAI taxonomy 1st iteration
	Slide 44: ECOMAI taxonomy 1st iteration
	Slide 45: Let’s not re-invent the wheel, shall we?
	Slide 46: Identify the “right” modeling languages
	Slide 47: VVML Principles
	Slide 48: Reinforcement Learning
	Slide 49
	Slide 50: DSL Description
	Slide 51
	Slide 52
	Slide 53
	Slide 54: ArchiMate + BPMN
	Slide 55: General Takeaway
	Slide 63: MMMI Level 5 | Optimizing
	Slide 64: Deployment of EA for ECOMAI
	Slide 65
	Slide 66
	Slide 67: LemonTree © Highlights
	Slide 68
	Slide 69

