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Let’s address these questions:

• Introduction to Domain Specific Languages (DSLs)

• How to establish a common language?
• bridging GAPs of terms such as AI model, trained AI model, model, etc.

• Identifying the right modeling approach

• use of different model languages and how to combine them

• How to integrate the modeling workflow into the development process?
• which model should be created when and by whom

• How to implement the right modeling approach as a framework into EA?
• Exploring the real-life example of EU funding project EUREKA PENTA ECOMAI



Domain Specific Languages

• Subject matter experts, or SMEs, are in 
charge of the knowledge and expertise 
that form the foundation of software

• But too often this rich expertise is not 
captured in a structured way and gets lost 
when translating it for software 
developers

https://freecontent.manning.com/the-what-and-why-of-domain-specific-lanugages/







HwComponent SwComponent

system

«metaclass»

Composition

Comprise

Element

SystemComponent

- File: string

- URI: string

0..*

«Comprise»

0..*

«Comprise»

«abstraction»

1..*«Comprise»











Try typing the phrase "the answer to life the universe and 
everything" into google...)



















Establish the common language

• Create and use a glossary of project terms (domain model…)
• Synonyms are excellent to reconcile different languages

• Use it consistently in all communication within/about the 
project
• Inside the team …

• With other partners …

Common language facilitates communication and avoids confusion

when I say apple 

I mean this one..



Baseline Application Description

• A gaming machine allowing clients to buy slot 
machine credits the player cash or some other 
sort of value, win or lose, and cash in their 
credits.
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How to Create a Slot Machine Domain Model 

• A person playing a slot machine can insert cash and insert TITO tickets (a paper ticket 
with a barcode), into a designated slots on the machine. 

• The machine can support multiple games and the player can select which game to play

• The game is then activated by means of a button, or on newer machines, by pressing a 
touchscreen on its face. 

• The game itself does not involved skill on the player's part

• The objective is to get the players to play
• The game usually involves matching symbols, either on mechanical reels that spin and stop to 

reveal one or several symbols, or on simulated reels shown on a video screen. 
• Most games have a variety of winning combination of symbols, often posted on the face of 

the machine. If a player matches a combination according to the rules of the game, the slot 
machine credits the player, such as free spins or extra games. 
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Modelling Approach

What the Modelling Approach consists of?

Method Process

What language elements should be used? *

What connectors should be used? * 

What element should be connected with which connector? *

How to model structure (Packages) should look like? *

Which elements should be contained in which Package? *

Approach specific subset 
of the language & 
required extensions for 
the Domain (DSL)

Approach specific model structure

Define additional rules, constraints and guidelines * Approach specific Governance

* Which Artifact should be created

* When

* Who’s responsible for that step

Models are structured data with a graphical representation!
What is the structure of this?

To prevent models like this, we need a modelling approach!

Define additional Stereotypes and Tags if required *

Project 
Metamodel



IoT-PML
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Identify the “right” modeling languages



Identify the right Modelling Approach

The more questions we have, 
the easier it is to find the required language elements!

You will prevent:
• Modelling too much
• Modelling too complex

You can assure:
• Any Model has a purpose
• You have found the easiest representation



Identify the “right” modeling workflow



IoT-PML metamodel example



Let’s stay on course…

Philippe Kruchten: The "4 + 1" View Model of Software Architecture, IEEE Software 12 (6), November 1995

- Class Diagram
- Communication diagram
- Sequence diagram

- Package diagram
- Component diagram
- Sequence Diagrams
- Componenets, Subsystems, 
Layers
- Import- and Export Relations

- Activity diagram
- Processes
- Messages

- Deployment diagram
- Nodes
- Directed Communication

- Use Case diagam
- Activity diagram
- Each of the 4 views is 
illustrated with Use Cases



1st Iteration Architectural Viewpoints 1/3

Architectural View
Stakeholder Concerns

(What does the view help to answer?)
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Context View

• Who (users, external systems) is interacting with the 
system?

• How does the system fit into the existing environment?
• What kind of information is required and delivered by 

the system?

X X X X X X X

Conceptual View

• What are the functional capabilities of the system?
• How does the system work on a high-level?
• How is the system structured conceptually?
• What are the operating modes of the system during a 

run-time phase?
• What kind of information is required and delivered by 

the conceptual elements?

X X X

Subsystem View
• What subsystems (software, electronical, mechanical, 

etc.) compose the system?
• What dependencies exist between subsystems?

X X X X



1st Iteration of Architectural Viewpoints 2/3

Architectural View
Stakeholder Concerns

(What does the view help to answer?)
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Subsystem 

Interaction View

• What kind of information is required and delivered by 
the subsystems?

• What interaction points does each subsystem expose?
• How do subsystems interact in order to provide a 

certain behavior or functionality?
• How does the system work?

X X X X X X

Software 

Implementation View

• Which software structural elements will be developed 
in-house and which will be acquired or reused?

• How are concepts like libraries, configuration files, 
assemblies, and executables used?

X X X X X X

Software Deployment 

View

• What is the run-time configuration of processing 
hardware nodes and the execution environment 
running on those notes?

• How are the implementation elements distributed 
across physical hardware nodes and execution 
environment?

X X X X X X



1st Iteration of Architectural Viewpoints 3/3

Architectural View
Stakeholder Concerns

(What does the view help to answer?)
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Software Structural 

View

• What logical structural elements compose the software 
system?

• What interfaces are provided and required by structural 
elements?

• What structural elements are nested together?
• Are all key usage scenarios covered by the identified 

structural elements?
• Which structural elements need to be built first for 

better scheduling?
• Which structural elements bring higher risk?
• Which functional units need more attention?
• What are the key integration points between functional 

units/modules?
• How do different elements interact with each other to 

satisfy key usage scenarios?
• What kind of information is required and delivered by 

the structural elements?

X X X X X



Final IoT-PML Architectural Viewpoints

Architectural Viewpoint
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Requirements X X X X X Systems engineering

System Context X X X X X X X Systems engineering

System Decomposition X X X Systems engineering

Software Stack X X X X X X IoT-PML

Cybersecurity X X X Threat modeling

IoT-PML



IoT-PML implementation in EA
Functional Req.                    System Context                 System Decomposition             Software Stack            Behavior Specification               Threat model

IoT-PML



IoT-PML example diagram
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Ecological Motor
Control and
Predictive

Maintenance with
AI

ECOMAI has started in April 2022



Mission

• ECOMAI project is developing 
technologies

• to enhance electric motor drive systems 
with an embedded AI system running on a 
specialized AI hardware platform

• to optimize the efficiency and lifetime of 
electric motors, thereby reducing energy 
consumption and enabling development 
of more ‘ecological’ systems

• to lead to market opportunities for 
applications in numerous sectors including 
automotive, medical and transportation.



Consortia
• Germany:

• Infineon Technologies AG (IFX)
• MOTEON
• FEAAM
• Technical University of Munich
• Technical University of Ilmenau

• Austria
• SparxSystems (SPARX): Model-based Design

• Subcontractor: Software Center Hagenberg GmbH 
(SCCH)

• Turkey
• Albayrak ltd., Railway Platform Screen Doors, 

• Subcontractor: Eskisehir Osmangazi University, (Eyup 
Cinar eyup.cinar@ogu.edu.tr)

mailto:eyup.cinar@ogu.edu.tr


Technology Value Chain and Use Cases



https://ecomai.eu



WP5: Embedded AI SW And Development 
Kit (SPARX)

• T5.1 Software/AI Model Development for 
Condition Monitoring and Predictive 
Maintenance (Alb) (Alb, UsePAT, IFX) 

• T5.2 Software/AI Model Development for 
Ecological Motor Drives  (TUIL) 
(MTN, TUIL, IFX, FEAAM)

• T5.3 Model-based Design Environment for AI-
enhanced Drive Systems (SPARX)
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ECOMAI taxonomy 1st iteration

Tiny hardware

platform::Application

software

Tiny hardware

platform::Firmware

The Domain Model is a view of all the objects 

that make up an area of interest, and their 

relationships. It  is used to capture the 

significant objects within a system, 

organization or any target domain.
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ECOMAI taxonomy 1st iteration

Tiny hardware platform
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The Domain Model is a view of all the objects that make 

up an area of interest, and their relationships. It  is used to 
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Let’s not re-invent the wheel, shall we?

 VVML (VALU3S)

 VVML is domain-specific language (DSL) for describing validation and verification activities

 Design of re-usable workflow assets such as V&V activities and artifacts that are exchanged between workflows

 2 levels of modelling: method definition and workflow specification

 IoT-PML (COMPACT)

 is a DSL suitable to IoT nodes, which is implemented as the UML profile.

 IoT-PML supports both, top-down and bottom-up design flow or its combination.

 Advantages

 Based on a simple, known, standardized modelling notation

 Implemented into EA as a framework using MDG Technology
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External (meta)model

Identify the “right” modeling 
languages

? DSL



VVML Principles

AI model generation
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Reinforcement Learning
ECOMAI T5.2 reinforcement learning

in: Requirementin: Requirement
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DSL Description









ArchiMate + BPMN



General Takeaway

IT Should Not Use BPMN To Capture Business 
Processes

• IT should not use BPMN to capture business 
processes as this will create chaos and no clear 
demarcation between business and the application 
layer.

• To avoid misunderstandings and political hick-hack, 
IT should use Archimate for application processes 
and UML Activity Diagrams for the creation of 
Application Process Flow Diagrams.

• BPMN should be left to Business Architects and the 
Business. In the BPMN Business Process flow 
diagrams, specify Business Services in the Pool and 
Business Roles and Business Collaborations in the 
Lanes.

Representation of Application Components in BPMN 
and UML Activity Diagrams

• In BPMN diagrams, Application Components such 
as User Interfaces may be represented as a 
"Supporting" architecture element.

• In UML Activity diagrams, generic business actors 
and application components from ArchiMate can 
be represented in the partitions or used as 
classifiers.

• Business Roles, Business Services, Business 
Processes, and Business Collaborations should not 
be used in order to maintain a clear separation.



MMMI Level 
5 | 

Optimizing



Deployment of EA for ECOMAI

https://research.sparxsystems.eu/rdweb

https://research.sparxsystems.eu/RDWeb/webclient

https://research.sparxsystems.eu/rdweb
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This deployment diagram describes the Pro Cloud Server together with 

Prolaborate can be used, showing how a single repository can be made 

available via the internet. The connection to the repository via Prolaborate 

can be accessed using a Web Browser on Desktops, Notebooks, Tablets and 

Smart Phones. The Enterprise Architect client is available vie Remote 

Desktop web client. The Remote Desktop web client lets users access your 

organization's Remote Desktop infrastructure through a compatible web 

browser.
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LemonTree © Highlights

Diff & Merge
3-way diffing and merging 

of Enterprise Architect 
models

Model Versioning
Parallel editing of models 
through optimistic model 

versioning

VCS Integration
Seamless integration with Git, 

Subversion, PTC, etc.

Branches of models
Parallel developments of 

versions and variants

Merge Preview
Diagram merge and merge 

preview

Review
Changes are visualized clearly 

and understandably for 
reviews
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